

Дистанционный курс

«РАЗВИТИЕ КОМПЕТЕНЦИЙ В ОБЛАСТИ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ. МОДЕЛИРОВАНИЕ АВТОНОМНЫХ ТРАНСПОРТНЫХ СРЕДСТВ»

Организаторы:

- ЧОУ ДПО Центр «ОРТ-СПб»
- Российская ассоциация образовательной робототехники
- Сетевая федеральная
 экспериментальная площадка по
 робототехнике Федерального
 института развития
 образования РФ

Задачи курса:

- Повышение квалификации педагогов в области инженерных компетенций и робототехники.
- Освоение элементов электроники и микропроцессоров на базе платформы Arduino, решение прикладных задач по робототехнике.
- Освоение STEM-подходов в обучении старшеклассников.
- Мотивация педагогов к участию в профильных робототехнических соревнованиях.
- Знакомство с концепцией Интернета вещей.
- Привлечение преподавателей к участию в движении WorldSkills и созданию условий для профориентации старшеклассников в области высоких технологий.

График обучения по курсу:

Курс «Развитие компетенций в области современных технологий. Моделирование автономных транспортных средств»	19.09- 27.12.16				
1 Сессия - базовый курс	19.09-07.11.16				
Курс «Развитие компетенций в области современных технологий»					
- для всех					
Каникулы	08.11-13.11.16				
2 Сессия - курсы по выбору	14.11-18.12.16				
Курс «Моделирование робоавтомобилей»					
Курс «Моделирование автономных летательный аппаратов»					
Сертификация	19.12-25.12.16				

модули курса. Сквозное зачетное задание для модулей 1-5

Введение. Ведущий Сергей Косаченко (Томск)

Сроки: 21-23.09.16

ВВЕДЕНИЕ В КУРС

Элементы введения:

- Тема 1. Компетентностно-ориентированный подход. Компетенции как образовательный результат. Задача оценки компетенций.
 Набор ключевых компетенции Hi-Tech.
- Тема 2. Модель. Моделирование. Особенности моделирования автономных транспортных средств.
- Тема 3. Инженерное образование. Системно-деятельностный подход. Практико-ориентированный подход. Метод проектов. Школьный инженерный проект.
- Тема 4. STEM-образование: понятия технологического и STEMобразования, основные модели развития STEM-образования.
- Тема 5. Средства обучения. Обзор образовательного набора.
 Технологическая база и технологии развития автономных транспортных средств.
- Тема 6. Проект КБ 2.0
- Практическая работа. Работа с глоссарием

Модуль 1. Ведущий Кирилл Романов (Екатеринбург)

Сроки: 24.09-1.10.16

КОМПЕТЕНЦИЯ "ИНЖЕНЕРНАЯ ГРАФИКА"

<u>Элементы модуля:</u>

- Тема 1. Компьютерная графика. Виды.
 Растровая, векторная, трехмерная.
- Тема 2. Анализ задач компетенции «Лазерные технологии», «Фрезерная обработка».
- Тема 3. Лекция 3. Методические аспекты работы с инженерной графикой
- Лабораторная работа №1. Лазерная резка плоского объекта сложной формы. Сборка "Бутерброд".
- Лабораторная работа №2. Лазерная резка объемной сборки. Рубка катера.
- Лабораторная работа №3. Фрезеровка слоев на глубину по векторам.
 Многоуровневая деталь большой толщины.
- Методические рекомендации для проведения занятий со школьниками.
- Вебинар

Оборудование и ПО модуля:

Лазер или фрезер или трехмерный принтер

Программное обеспечение:

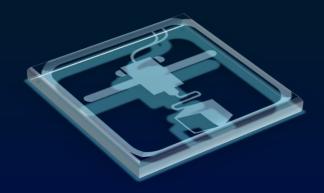
САМ оборудования

избирательно:

- Inkscape
- CorelDraw
- SolidEdge
- ArtCam

Зачетное задания

- Тест
- Зачетная работа по изготовлению чертежа для моделирования светофора



Модуль 2. Ведущий Кирилл Романов (Екатеринбург)

Сроки: 2.10-9.10.16

КОМПЕТЕНЦИЯ "ПРОТОТИПИРОВАНИЕ"

Элементы модуля:

- Тема 1. Инженерная графика для прототипирования.
- Тема 2. Аддитивные и сабтрактивные технологии получения прототипа. 3D-печать.
- Тема 3. Осевые и координатные станки.
 Гибридные технологии обработки и прототипирования.
- Лабораторная работа №1. SolidEdge (Компас) как программа твердотельного моделирования. Моделирование на основе эскизов.
- Лабораторная работа №2. Печать твердотельной детали
- Лабораторная работа №3. Solid Edge (Компас) как программа твердотельного моделирования. Часть 2. Основные приемы работы и ресурсы для самоподготовки. Выполнение заданий средствами программы
- Методические рекомендации для проведения занятий со школьниками.

Оборудование и ПО модуля:

Лазер или фрезер или трехмерный принтер

Программное обеспечение (избирательно):

- Лазер Corel, Inkscape или любой иной векторный редактор + CAM (Поставляется в комплекте с оборудованием)
- фрезер Corel, Inkscape или любой иной векторный редактор + трехмерный твердотельный CAD SolidEdge (или любой другой) + CAM (Поставляется в комплекте с оборудованием)
- Трехмерный принтер трехмерный твердотельный CAD SolidEdge (или любой другой) + CAM (Поставляется в комплекте с оборудованием)

Зачетное задания

- Тест
- Зачетная работа по изготовлению прототипа светофора

Модуль 3. Ведущий Сергей Петров (Калининград)

Сроки: 10.10-17.10.16

КОМПЕТЕНЦИЯ "ЭЛЕКТРОНИКА"

Элементы модуля:

- Тема 1. Постоянный и переменный электрический ток. Законы и правила электрических цепей.
- Тема 2. Дискретные электронные компоненты, их назначение и основные характеристики.
- Тема 3. Интегральные микросхемы. Виды, назначение, характеристики.
- Тема 4. Микроконтроллеры и микроконтроллерные платы. Программирование микроконтроллеров.
- Лабораторная работа № 1. Состав лаборатории.
 Приборы инструменты и материалы. Правила работы. Быстрая сборка схем. Виды и правила монтажа. Правила пайки.
- Лабораторная работа № 2. Системы автоматизированного проектирования (САПР).
 Выполнение чертежей схем и проектирование печатных плат. Симуляторы электронных схем.
- Лабораторная работа № 3. Изготовление печатных плат. «Сухая» и «мокрая» технология. Двусторонние платы в любительских условиях.
- Лабораторная работа № 4. Программирование Arduino. Программирование микроконтроллера AtMega с помощью Arduino.
- Методические рекомендации для проведения занятий со школьниками.

Оборудование и ПО модуля:

Оборудование:

- Достаточно иметь доступ к оборудованию*
- элементы из набора
 Матрешка Y
 (http://amperka.ru/product/matryoshka-y)
- паяльное оборудование,
- пинцет и др.инструменты

Программное обеспечение:

Arduino IDE

Зачетное задания

- Тест
- Зачетная работа по созданию светофора, управляемого программой

Модуль 4. Ведущий Александр Кочегаров (Новосибирск) Сроки: 18.10-28.10.16

КОМПЕТЕНЦИЯ "МЕХАТРОНИКА И ИНТЕРНЕТ ВЕЩЕЙ"

Модуль 4. Ведущий Александр Кочегаров (Новосибирск) Сроки: 18.10-28.10.16

КОМПЕТЕНЦИЯ "МЕХАТРОНИКА И ИНТЕРНЕТ ВЕЩЕЙ"

<u>Элементы модуля:</u>

- Тема1: Знакомство со средой FluidSIM.
- Тема2: Основы электропневмоавтоматики.
 Пневмоприводы.
- Тема3: Основные понятия Булевой алгебры. Методы составления и решения таблиц истинности.
- Тема4: Реле как элемент памяти. Релейноконтакторные схемы.
- Тема5: Самоподхват реле. Реле счетчик. Реле времени.
- Тема6: Правила построения принципиальных электросхем.
- Тема7: Мехатронные станции MecLab.
- Тема8: Приводы в автономных транспортных средствах.
- Тема 9. Технологии ІоТ (интернет вещей).
- Лабораторная работа. Умный светофор, как элемент умной транспортной системы.
- Методические рекомендации для проведения занятий со школьниками.
- Вебинар

Оборудование и ПО модуля:

Оборудование:

- WiFi модуль
 ESP8266,
 Дальномер НС SRo4
- ArduinoUno.

Программное обеспечение:

- среда разработки FluidSIM (бесплатная версия)
- Платформа ThingWorx (доступ)
- мехатронные станции MecLab (доступ)

Зачетное задания

- Тест/зачетная работа по мехатронике
- Зачетная работа по изготовлению умного светофора

Модуль 5. Ведущий Игорь Кот (Одесса)

Сроки: 28.10-6.11.16

КОМПЕТЕНЦИЯ "МОБИЛЬНАЯ РОБОТОТЕХНИКА"

Элементы модуля:

- Тема 1. Двигатели постоянного тока
- Тема 2. Сервопривод
- Тема 3. Расширяем возможности Arduino с помощью плат расширения
- Тема 4. Взаимодействие роботов с окружающей средой.
- Тема 5. Взаимодействие роботов с окружающей средой. Алгоритмы движения вдоль линии
- Тема 6. Применение ТАУ в управлении роботом
- Лабораторная работа №1. Основы управления моторами
- Лабораторная работа №2. Основы управления сервоприводом
- Лабораторная работа №3. Управление моторами с помощью платы расширения
- Лабораторная работа №4. Организация взаимодействия робота с окружающей средой
- Лабораторная работа №5. Алгоритмы движения вдоль линии
- Лабораторная работа №6. Применение ТАУ в управлении роботом.

Оборудование и ПО модуля:

Оборудование:

- Arduino Uno Rev3
- Макетная плата большая
- Arduino Motor Shield Rev3
- Инфракрасный датчик расстояния
- Датчик линии цифровой (2 шт)
- Датчик линии аналоговый (2 шт)
- Мобильная платформа Turtle 2WD для Arduino
- TowerPro SG 5010 серводвигатель
- Коллекторный двигатель
- Резисторы (2200м, 1 кОм, 10 кОм)
- Транзисторы биполярные (NPN, BC337-16) 0.5W

- Силовые полевые транзисторы IRF540N
- Диоды выпрямительные 1N4007
- Источники питания
- Соединительные провода

Программное обеспечение:

Arduino IDE

Зачетные задания

- Тест
- Зачетный проект «Аккуратная езда»

Модуль 6А. Вариативный. Ведущий Николай Цыбулянко (Киев) Сроки: 14.11-1.12.16

МОДЕЛИРОВАНИЕ РОБОАВТОМОБИЛЕЙ

Элементы модуля:

- Тема 1. Понятия механизации, автоматизации, роботизации.
 Робоавтомобиль и его модель. Соревнования с участием робоавтомобилей.
- Тема 2. Принцип Аккермана. Дифференциал. Выбор платформы для моделирования. Сервопривод. Датчики и получение данных о дороге и препятствиях.
- Тема 3. Программирование роботехнических и автоматизированных систем.
- Лабораторная № 1. Модель робоавтомобиля. Сборка модели.
 Подключение управления поворотом колёс и главным мотором.
- Лабораторная № 2. Программирование старта, остановки. Препятствия и действия по предотвращения столкновений.
- Лабораторная № 3. Работа с датчиками для движения по дороге.
 Калибровка датчиков. Руление и повороты с отслеживанием полосы.
- Лабораторная № 4. Приём и обработка данных по ИК каналу.
- Методические рекомендации для проведения занятий со школьниками.
- Вебинар

Оборудование и ПО модуля:

Варианты	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6
	Лего	Лего и ИРДА	Модель 1:10	Модель 1:10 и ИРДА	Модель автомобиля	Модель автомобиля и ИРДА
База для сборки		2.1 - Лего NXT 2.2 - Лего NXT + ресурсный 2.3 - Лего EV3 2.4 - Лего EV3 + ресурсный	Модель на платформе 1:10 с	Модель на платформе 1:10 с радиоуправлен ием 2,4 ГГц	Модель любая, с коллекторным мотором и стандартной	Модель любая, с коллекторным мотором и стандартной
Датчик освещённости Лего - 3 шт (количество всего)	*	*				
Датчик расстояния Лего - 1 шт (количество всего)	*	*				
Дополнительный мотор 540 для машинки на 45-85 витков			*	*	*	*
Датчик линии аналоговый или цифроаналоговый 5 шт, ИК или видимого света			*	*	*	*
Датчик расстояния с минимальным расстоянием не более 10 см, с максимальным расстоянием не менее 40 см. Ультразвуковой (предпочтительнее) или ИК. Так как эти датчики частенько выходят из строя, желательно иметь в наличии минимум 2 шт.			*	*	*	*
IrDA - 2 (3) шт		*		*		*
Ардуинка или аналог - 1 шт.на машинку		*	*	*	*	*
Ардуинка или аналог - 1 (2) шт. на светофор и знак стоп		*		*		*
Датчик освещённости или фоторезистор			*	*	*	*
Моторшилд на 10-30 Ампер. Если моторчик маломощный, то можно на 2A					*	*
Термоклеевой пистолет, 2-х сторонний поролоновый скотч, пластиковые хомуты-стяжки		*	*	*	*	*

Зачетное задания

Зачетная работа по изготовлению модели робоавтомобиля и ее движению по трассе

Модуль 6Б. Вариативный. Ведущий Николай Сенюшкин (Уфа) Сроки: 14.11-1.12.16

МОДЕЛИРОВАНИЕ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Элементы модуля:

- Тема 1. Основы аэродинамики и виды летательных аппаратов. Способы взлета и посадки.
- Тема 2. Основы управления и динамики полета летательного аппарата.
- Тема 3. Требования предъявляемые к ЛА.
- Тема 4. Материалы и технологии используемые в авиастроении.
- Тема. Системы сбора полетной информации.
- Тема 6. Системы дистанционного управления ЛА.
- Тема 7. Автоматическое управление полетом.
- Лабораторная работа №1. Подключение к Ардуино датчика давления.
- Лабораторная работа №2. Подключение к Ардуино гироскопа (акселерометра).
- Лабораторная работа №3. Подключение к Ардуино компаса.
- Лабораторная работа №4. Организация передачи данных по радиоканалу.
- Методические рекомендации для проведения занятий со школьниками.
- Вебинар

Оборудование и ПО модуля:

Достаточно иметь доступ к оборудованию*

- Набор Матрешка Y
 (<u>http://amperka.ru/produc</u>
 <u>t/matryoshka-y</u>)
- гироскоп с интерфейсом
 12C
- компас с интерфейсом I2C
- барометр (высотомер) с интерфейсом I2C

Программное обеспечение:

Aрдуино IDE

Зачетное задания

- Тест
- Зачетная работа по разработке пилотной системы

Модуль 7. Ведущий Сергей Косаченко (Томск)

Сроки: 2.12-7.12.16

ОРГАНИЗАЦИЯ ЗАНЯТИЙ СО ШКОЛЬНИКАМИ

Модуль 7. Ведущий Сергей Косаченко (Томск)

Сроки: 2.12-7.12.16

ОРГАНИЗАЦИЯ ЗАНЯТИЙ СО ШКОЛЬНИКАМИ

Элементы модуля:

- Тема 1. Обзор учебных программ. Обзор учебной и методической литературы.
- Тема 2. Средства обучения. Обзор образовательных механических, электронных и робототехнических наборов. Обзор учебных станков с ЧПУ, лазерных резаков, 3Dпринтеров.
- Тема 3. Возможные формы организации занятий:
 Робототехника в рамках предмета Технология. Элективный курс. Кружок.
- Тема 4. Соревновательная деятельность. Подготовка к соревнованиям. Регламенты. Поля. Организация судейства. Волонтеры. Регистрация участников. Проведение соревнований. Награждение.
- Вебинар

Зачетное задания

Зачетная работа: дорожная карта

Вебинары

начало в 15-00 мск (предварительно)

- Вебинар "Организация обучения на дистанционном курсе"
 20 сентября.
- Вебинар "Школьный инженерный проект: истоки, задачи, документация, опыт" 28 сентября.
- Вебинар "Компетентностный подход и движение WorldSkills" 28 октября.
- Экваториальный вебинар (итоги 1 сессии и вводная для специалитета) 14 ноября.
- Вебинар "Моделирование робоавтомобилей: образовательные цели, содержание, оборудование, опыт" зо ноября.
- Вебинар "Моделирование беспилотников: образовательные цели, содержание, оборудование, опыт" 29 ноября.
- Вебинар "Соревнования деятельность. Роботраффик" декабря.
- Вебинар "Соревнования деятельность. Чемпионаты по беспилотникам" 6 декабря.
- Итоговый вебинар 26 декабря.

Завершение обучения:

- Итоговый проект: 8 − 18 декабря 2016 года.
- Проверка и сертификация: 19 25 декабря 2016.
- Итоговый вебинар: 26 декабря 2016 года.
- Анкетирование слушателей курсов: 23-27 декабря 2016 года.
- Пересылка сертификатов и удостоверений о повышении квалификации с 10 января 2017.

ОРГМОМЕНТЫ ПО КУРСУ

Для участия необходимо:

- Убедиться, в наличии необходимое для прохождения обучения оборудования.
- Выбрать категорию участия (академический или вольный слушатель).
- Ознакомиться с договором оферты.
- До 18.09.16 оплатить обучение удобным для вас способом (Яндекс-кошелек, оплата через Сбербанк по реквизитам, оплата по счету (для юридических лиц) в соответствии с выбранной категорией и рекомендациями.
- Переслать на адрес <u>distans@ort.spb.ru</u> подтверждение оплаты.
- Получить от администратора курса логин и пароль для доступа в систему Moodle.

Образцы документов о прохождении обучения

Лицензия на право ведения образовательной деятельности 78 №002339

> УДОСТОВЕРЕНИЕ о повышении квалификации

Регистрационный номер CARSP1KIT №XXXXXXXXX

Санкт-Петербург 2016

Авторы-ведущие курса:

- Максим Васильев (Москва) Президент Российский ассоциации образовательной робототехники (РАОР), председатель национального совета Всемирной робототехнической олимпиады (WRO), главный тренер сборной по олимпиадной робототехнике Москвы.
- Сергей Косаченко (Томск) региональный представитель сборной школьников Томской области по робототехнике, тренер победителей различных робототехнических соревнований для школьников регионального и российского уровней, автор курса по микроэлектронике на контроллере Arduino.
- Игорь Кот (Одесса, Украина) автор учебных программ и УМК по образовательной робототехнике, тренер неоднократных победителей Международных соревнований Robotraffic и Roborace (категория: школьники), судья международных соревнований.
- Александр Кочегаров (Новосибирская область) старший региональный эксперт JS по электронике, региональный эксперт JS по мехатронике. Тренер победителей JuniorSkills II Национального чемпионата WorldSkills Hi-Tech 2015 в компетенции электроника.

Авторы-ведущие курса:

- Сергей Петров (Калининград) автор учебных программ и УМК по образовательной робототехнике, тренер команды-победителей ВРО и победителей JuniorSkills II Национального чемпионата WorldSkills Hi-Tech 2015 в компетенции электроника, судья Роботраффика, руководитель проекта КБ 2.0, руководитель лаборатории Балтийского федерального университета им. И.Канта.
- Кирилл Романов (Екатеринбург) руководитель макетной мастерской, автор учебных курсов и УМК.
- Николай Сенюшкин (Уфа) заместитель декана ФАДЭТ, старший научный сотрудник НИЛ САПР-Д Уфимского государственного авиационно-технического университета, канд.техн.наук, тренер призеров ВРО (категория Роботраффик).
- Николай Цыбулянко (Черновцы, Украина) разработчик программ по мехатронике и мобильной робототехнике, тренер победителей Международных соревнований Robotraffic, судья ВРО (категория Роботраффик).

Оргкомитет курса:

- **Куратор курса** Галина Брусницына, к.п.н., директор Центр ОРТ Екатеринбург, координатор сетевой ФЭП ФИРО, galina.brusnitsyna@ort.ru.
- Модератор курса Сергей Косаченко, заместитель директора по информационным технологиям, преподаватель микроэлектроники и робототехники в ОГБОУ "Томский физикотехнический лицей", kosachenkosv@yandex.ru.
- **Администратор курса** Елена Макарова, PR-менеджер НОУ "Центр "ОРТ-СПб", 8(812)405-80-11; 8(921)315-67-73, <u>elena m@ort.spb.ru</u>.